104 research outputs found

    Event-related alpha suppression in response to facial motion

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors. © 2014 Girges et al

    Neural representations of the sense of self

    Get PDF
    The brain constructs representations of what is sensed and thought about in the form of nerve impulses that propagate in circuits and network assemblies (Circuit Impulse Patterns, CIPs). CIP representations of which humans are consciously aware occur in the context of a sense of self. Thus, research on mechanisms of consciousness might benefit from a focus on how a conscious sense of self is represented in brain. Like all senses, the sense of self must be contained in patterns of nerve impulses. Unlike the traditional senses that are registered by impulse flow in relatively simple, pauci-synaptic projection pathways, the sense of self is a system- level phenomenon that may be generated by impulse patterns in widely distributed complex and interacting circuits. The problem for researchers then is to identify the CIPs that are unique to conscious experience. Also likely to be of great relevance to constructing the representation of self are the coherence shifts in activity timing relations among the circuits. Consider that an embodied sense of self is generated and contained as unique combinatorial temporal patterns across multiple neurons in each circuit that contributes to constructing the sense of self. As with other kinds of CIPs, those representing the sense of self can be learned from experience, stored in memory, modified by subsequent experiences, and expressed in the form of decisions, choices, and commands. These CIPs are proposed here to be the actual physical basis for conscious thought and the sense of self. When active in wakefulness or dream states, the CIP representations of self act as an agent of the brain, metaphorically as an avatar. Because the selfhood CIP patterns may only have to represent the self and not directly represent the inner and outer worlds of embodied brain, the self representation should have more degrees of freedom than subconscious mind and may therefore have some capacity for a free-will mind of its own. S everal lines of evidence for this theory are reviewed. Suggested new research includes identifying distinct combinatorially coded impulse patterns and their temporal coherence shifts in defined circuitry, such as neocortical microcolumns. This task might be facilitated by identifying the micro-topography of field-potential oscillatory coherences among various regions and between different frequencies associated with specific conscious mentation. Other approaches can include identifying the changes in discrete conscious operations produced by focal trans-cranial magnetic stimulation

    New approaches to the study of human brain networks underlying spatial attention and related processes

    Get PDF
    Cognitive processes, such as spatial attention, are thought to rely on extended networks in the human brain. Both clinical data from lesioned patients and fMRI data acquired when healthy subjects perform particular cognitive tasks typically implicate a wide expanse of potentially contributing areas, rather than just a single brain area. Conversely, evidence from more targeted interventions, such as transcranial magnetic stimulation (TMS) or invasive microstimulation of the brain, or selective study of patients with highly focal brain damage, can sometimes indicate that a single brain area may make a key contribution to a particular cognitive process. But this in turn raises questions about how such a brain area may interface with other interconnected areas within a more extended network to support cognitive processes. Here, we provide a brief overview of new approaches that seek to characterise the causal role of particular brain areas within networks of several interacting areas, by measuring the effects of manipulations for a targeted area on function in remote interconnected areas. In human participants, these approaches include concurrent TMS-fMRI and TMS-EEG, as well as combination of the focal lesion method in selected patients with fMRI and/or EEG measures of the functional impact from the lesion on interconnected intact brain areas. Such approaches shed new light on how frontal cortex and parietal cortex modulate sensory areas in the service of attention and cognition, for the normal and damaged human brain

    Manipulation of Pre-Target Activity on the Right Frontal Eye Field Enhances Conscious Visual Perception in Humans

    Get PDF
    The right Frontal Eye Field (FEF) is a region of the human brain, which has been consistently involved in visuo-spatial attention and access to consciousness. Nonetheless, the extent of this cortical site’s ability to influence specific aspects of visual performance remains debated. We hereby manipulated pre-target activity on the right FEF and explored its influence on the detection and categorization of low-contrast near-threshold visual stimuli. Our data show that pre-target frontal neurostimulation has the potential when used alone to induce enhancements of conscious visual detection. More interestingly, when FEF stimulation was combined with visuo-spatial cues, improvements remained present only for trials in which the cue correctly predicted the location of the subsequent target. Our data provide evidence for the causal role of the right FEF pre-target activity in the modulation of human conscious vision and reveal the dependence of such neurostimulatory effects on the state of activity set up by cue validity in the dorsal attentional orienting network

    Ten years of Nature Reviews Neuroscience: insights from the highly cited

    Full text link

    STABILIZZAZIONE A CALCE PER REIMPIEGO DI SEDIMENTI MARINI DI DRAGAGGIO

    No full text
    La stabilizzazione a calce è una tecnica di miglioramento delle caratteristiche fisiche e meccaniche dei terreni naturali che sta trovando sempre maggior impiego nella costruzione di importanti opere di ingegneria civile. Nella nota sono in particolare riportati i risultati sperimentali ottenuti utilizzando come oggetto della stabilizzazione un terreno proveniente da operazioni di dragaggio del fondo marino. Uno dei problemi principali, infatti, nella progettazione e realizzazione di infrastrutture portuali è legato alla necessità di dover smaltire grandi quantità di materiale dragato, soprattutto qualora si renda necessario modificare sensibilmente le profondità utili dell’area portuale. Il sedimento marino dragato può non possedere però caratteristiche fisiche e meccaniche tali da renderlo utilizzabile come materiale da costruzione all’interno dell’opera. È necessario, in tal caso, individuare siti di discarica per il materiale dragato e, contestualmente, di cave di prestito dell’idoneo materiale da costruzione. Una valida alternativa a tale scenario, oneroso sia dal punto di vista ambientale che da quello economico, può essere rappresentata proprio dal riutilizzo di tali terreni previa stabilizzazione con calce
    corecore